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Abstract: N = 6 superconformal Chern-Simons theory was proposed as gauge theory

dual to Type IIA string theory on AdS4 ⊗ CP
3. We study integrability of the theory

from conformal dimension spectrum of single trace operators at planar limit. At strong

‘t Hooft coupling, the spectrum is obtained from excitation energy of free superstring on

OSp(6|4; R)/SO(3, 1) × SU(3) × U(1) supercoset. We recall that the worldsheet theory is

integrable classically by utilizing well-known results concerning sigma model on symmetric

space. With R-symmetry group SU(4), we also solve relevant Yang-Baxter equation for a

spin chain system associated with the single trace operators. From the solution, we con-

struct alternating spin chain Hamiltonian involving three-site interactions between 4 and

4. At weak ‘t Hooft coupling, we study gauge theory perturbatively, and calculate action

of dilatation operator to single trace operators up to two loops. To ensure consistency, we

computed all relevant Feynman diagrams contributing to the dilatation opeator. We find

that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-

Baxter equation. We further study new issues arising from the shortest gauge invariant

operators TrY IY †
J = (15,1). We observe that ‘wrapping interactions’ are present, compute

the true spectrum and find that the spectrum agrees with prediction from supersymmetry.

We also find that scaling dimension computed naively from alternating spin chain Hamilto-

nian coincides with the true spectrum. We solve Bethe ansatz equations for small number

of excitations, and find indications of correlation between excitations of 4’s and 4’s and of

nonexistence of mesonic (44) bound-state.
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1. Introduction

In a recent remarkable development, Aharony, Bergman, Jafferis and Maldacena

(ABJM) [1] made a new addition to the list of microscopic AdS/CFT correspondence [2]:

three-dimensional N = 6 superconformal Chern-Simons theory dual to Type IIA string

theory on AdS4 × CP
3 [3]. Both sides of the correspondence are characterized by two

integer-valued coupling parameters N and k. On the superconformal Chern-Simons theory

side, they are the rank of product gauge group U(N) × U(N) and Chern-Simons levels

+k,−k, respectively. On the Type IIA string theory side, they are related to spacetime

curvature and dilaton gradient or Ramond-Ramond flux, all measured in string unit. Much

the same way as the counterpart between N = 4 super Yang-Mills theory and Type IIB
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string theory on AdS5 × S
5, we can put the new correspondence into precision tests in the

planar limit:

N → ∞, k → ∞ with λ ≡ N

k
fixed (1.1)

by interpolating ‘t Hooft coupling parameter λ between superconformal Chern-Simons

theory regime at λ≪ 1 and semiclassical AdS4 × CP
3 string theory regime at λ≫ 1.

In the correspondence between N = 4 super Yang-Mills theory and Type IIB string

theory on AdS5×S
5, the integrability structure first discovered by Minahan and Zarembo [4]

led to remarkable progress in diverse fronts of the correspondence.1 It is therefore inter-

esting to examine if the new correspondence shows also an integrability structure. The

purpose of this work is to demonstrate integrability structure inherent to the N = 6 su-

perconformal Chern-Simons theory of ABJM.2

AdS/CFT correspondence asserts that gauge invariant, single trace operators in su-

perconformal Chern-Simons theory are dual to free string excitation modes in AdS4×CP
3,

valid at weak and strong ‘t Hooft coupling regime, respectively. In particular, conformal

dimension of the operators should match with excitation energy of the string modes. The

N = 6 superconformal Chern-Simons theory has SO(6) ≃ SU(4) R-symmetry and contains

two sets of bi-fundamental scalar fields Y I , Y †
I (I = 1, 2, 3, 4) that transform as 4,4 under

SU(4). Therefore, the single trace operators take the form:

O = Tr(Y I1Y †
J1

· · · Y ILY †
JL

)CJ1···JL

I1···IL

= Tr(Y †
J1
Y I1 · · · Y †

JL
Y IL)CJ1···JL

I1···IL
. (1.2)

In superconformal Chern-Simons theory, chiral primary operators, corresponding to the

choice of (1.2) with CJ1···JL

I1···IL
totally symmetric in both sets of indices and traceless, form the

lightest states. In free string theory on AdS4×CP
3. Kaluza-Klein supergravity modes form

the lightest states. In this work, we study conformal dimension of single trace operators

and identify integrability structure organizing the excitation spectrum above the chiral

primary or the Kaluza-Klein states.3

In section 2, we begin with recapitulating the standard argument for integrability of

free string on AdS4 × CP
3 at λ → ∞. Recalling the construction of [24] and utilizing the

idea of [25], we argue that sigma model on OSp(6|4; R)/[SO(3, 1)×SU(3)×U(1)] supercoset

has commuting monodromy matrices and infinitely many conserved nonlocal charges. In

section 3, we begin main part of this work. Guided by earlier development in N = 4

super Yang-Mills counterpart, we assume integrability and solve Yang-Baxter equations

for R-matrices between 4 and 4 sites in (1.2). From corresponding transfer matrices, we

then find the Hamiltonian takes the form of one-parameter family of ’alternating spin

chain’, whose variants were studied previously in different contexts [26]–[30]. In section

1Selected but nonexhaustive list of contributions in this subject include [5] - [21]. For a comprehensive

mid-development review, see [13].
2Integrability in N ≤ 3 superconformal Chern-Simons theory was investigated by Gaiotto and Yin [22]

previously. Their tentative result indicated otherwise.
3While bulk of this work was completed, we received parallel work in [23].
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4, we study superconformal Chern-Simons theory of ABJM at λ → 0 in perturbation

theory. Pure Chern-Simons theory is free from any ultraviolet divergences since the theory

is diffeomorphism invariant and hence topological . Once matter is coupled, as in ABJM

theory, topological feature is lost and the quantum theory will receive nontrivial radiative

corrections. As such, the single trace operators (1.2) will acquire nontrivial anomalous

dimensions in general. In three dimensions, logarithmic ultraviolet divergence arises only

at even loop orders. Therefore, the first nontrivial correction starts at two loops. We

compute two-loop operator mixing and anomalous dimension matrix of the single trace

operators (1.2). In dimensional reduction method, we compute the complete set of relevant

Feynman diagrams and find that the two-loop anomalous dimension matrix matches with

the integrable ‘alternating spin chain’ Hamiltonian derived in section 3. In section 5, we

study a new important feature of the superconformal Chern-Simons theory compared to

N = 4 super Yang-Mills theory. Since the anomalous dimensions begin to arise from two

loops and next-to-nearest sites, the shortest single trace operators of L = 1 will be subject

to ‘wrapping interactions’. The ‘alternating spin chain’ Hamiltonian does not describe

spectrum of L = 1 operators, so we compute all relevant ‘wrapping interaction’ diagrams

and construct the correct Hamiltonian for L = 1. Curiously, we find that the correct

spectrum coincides with the naive spectrum computed from the ‘alternating spin chain’

Hamiltonian at L = 1. In section 6, utilizing results previously obtained for general An−1

Lie algebras [31, 27, 30], we explicitly write down eigenvalues of the transfer matrices and

Bethe ansatz equations of the ‘alternating spin chain’ we derived in section 3. To gain

understanding how the ‘alternating spins’ behave, we solve the equations for a few simple

situations. We find an indication for real-space correlations between excitations on 4 spin

sites and those on 4 spin sites, and for non-existence of meson-like (44) bound-states. We

discuss various implications of these findings for general excitations. In particular, we argue

that general excitations are more complex than the pattern emerging from closed SU(2)

sub-sectors discussed recently [32, 33].

2. Integrable string from worldsheet sigma model

In this section, we set out a motivation for searching for integrability in N = 6 supercon-

formal Chern-Simons theory. The λ→ ∞ dual of this theory is Type IIA string theory on

AdS4 ⊗ CP
3. The background is a direct product of symmetric spaces, AdS4 and CP

3. It

is well known that the (1 + 1)-dimensional sigma model on symmetric space is classically

integrable. So, at least for bosonic modes, we expect worldsheet dynamics of a free string

on AdS4 ⊗ CP
3 is integrable at the classical level, λ→ ∞. In this section, we recapitulate

this argument for the bosonic part and discuss how the construction to full superstring

can be made.4

Bosonic part of string worldsheet Lagrangian on AdS4 ⊗ CP
3 is given by

Ib =
R2

4π

∫

Σ

√
−hhαβ

[
(DαX

m)†(DβX
m) + (DαZ

a)†(DβZ
a)
]
. (2.1)

4For other parallel works on classical integrability, see [34]–[36].
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Here, we use embedding coordinates in R
3,2 and C

4 and describe AdS4 = SO(3, 2)/SO(3, 1)

and CP
3 = SU(4)/SU(3) × U(1) as G/H coset hypersurfaces:

AdS4 : (Xm) = (X−1,X1,X2,X3,X0) with X2 = 1 ,

CP
3 : (Za) = (Z1, Z2, Z3, Z4)/{≃,C} with |Z|2 = 1, (2.2)

respectively. The hypersurface conditions are imposed by introducing auxiliary connection

Kα, Aα and by defining covariant derivatives5 DαX
m ≡ ∂αX

m + iKαX
m and DαZ

a ≡
∂αZ

a+iAαZ
a. These conditions imply thatXm∂αXm = 0 and (DαZ

a)†Za = Za†(DαZ
a) =

0. Following [24], we first recapitulate basic aspects for classical integrability of sigma model

on AdS4×CP
3. Construction of the coset sigma model is facilitated by the coset elements:

G(σ) ≡ g(σ) ⊕ g̃(σ) = eiπP (σ) ⊕ eiπ
eP (σ) (2.3)

where P (σ), P̃ (σ) are projection matrices onto respective one-dimensional subspaces.

They are

Pmn(σ) = Xm(σ)Xn(σ) with δmnP
mn(σ) = 1,

P̃ ab(σ) = Za†(σ)Zb(σ) with δabP
ab(σ) = 1, (2.4)

respectively. By elementary algebra, we verify that

G(σ) = G−1(σ) = (I5 − 2P (σ)) ⊕ (I4 − 2P̃ (σ)). (2.5)

Then, because −8|DαX
m|2 = Tr(∂αg · ∂αg

−1) for AdS4 and +4|DαZ
a|2 = Tr(∂αg̃ · ∂β g̃

−1)

for CP
3, the worldsheet action (2.1) is expressible as

Ibosonic =
R2

8

∫

Σ

√
−hhαβ

[
− 1

2
TrJαJβ + 2TrJ̃αJ̃β

]
, (2.6)

where J = g−1dg and J̃ = g̃−1dg̃, respectively. We shall choose the conformal gauge√
−hhαβ = δαβ on the worldsheet. This leads to Virasoro gauge condition

T± ≡ −1

4
(J0 ± J1)

2 + (J̃0 ± J̃1)
2 = 0 . (2.7)

The currents J, J̃ are conserved by equations of motion, and define tangent flows on the

G/H coset space.

We now take group conjugation and transform the left-invariant currents J, J̃ to the

right-invariant currents: (j, j̃) = (g ·J ·g−1, g̃ ·J̃ ·g̃−1). The equations of motion in conformal

gauge are

d∗j(σ) = 0 and d∗j̃(σ) = 0. (2.8)

From the Bianchi identities, we also have

dj + j ∧ j = 0 and dj̃ + j̃ ∧ j̃ = 0. (2.9)

5We introduced auxiliary connection Kα to treat AdS4 in complete parallel to CP
3.
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Finally, Virasoro constraints are

−1

4
(j0 ± j1)

2 + (j̃0 ± j̃1)
2 = 0. (2.10)

We can solve these equations using the Lax representation. Consider the Lax derivative

with flat connection a(x) depending on a spectral parameter x:

D(x) = d + a(x) with da+ a ∧ a = 0. (2.11)

Using (2.8), (2.9), we find that the most general form of the Lax connection is given by

a(x) =
2

x2 − 1
j(σ) +

2x

x2 − 1
∗j(σ) x ∈ C + {∞}/{±1}. (2.12)

and similarly construct ã(x) from j̃(σ). With the flat connection A(x) ≡ (a(x), ã(x)),

consider the Wilson line

W [γ;x] = P exp

(∫

γ
A(x)

)
(2.13)

As the connection A(x) is flat, the eigenvalues of the Wilson line are independent of the

choice of the contour γ. Thus, all Wilson lines commute each another and provides classical

R-matrices obeying Yang-Baxter equations. Expanding in spectral parameter x, we then

obtain infinitely many conserved nonlocal charges as moment of the power series:

Q(n) =
1

n!
∂n

x

∫

γ
dσA(x)

∣∣∣
x=0

. (2.14)

This establishes that the sigma model on AdS4 × CP
3 is classically integrable.

We now discuss how the above consideration may be extended to Type IIA string on

the supercoset:

Ĝ

H
=

OSp(6|4; R)

SO(3, 1) × SU(3) × U(1)
. (2.15)

With the coefficients of current bilinears determined as in (2.6), we see immediately that

the worldsheet Lagrangian is expressible as supertrace over the supergroup OSp(6|4; R):

Isupercoset =
R2

8

∫

Σ
Str (Ĵ ∧ ∗Ĵ) . (2.16)

Here, Ĵ(σ) = Ĝ−1(σ)dĜ(σ) and Ĝ(σ) = exp(iπP̂ (σ)) is the supercoset element. This

indicates that the bosonic action (2.6) is extendible straightforwardly to a supercoset action

by adding 24 fermionic off-diagonal components to (2.3)–(2.5) and define super-projection

matrix P̂ and supercoset element Ĝ analogously.

Construction of infinitely many nonlocal currents requires a new condition to the su-

percoset. If the supergroup Ĝ permits Z4 grading under which the subgroup H is a fixed

point set, the construction of [25] implies that a flat connection exists from which nonlocal
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currents can be constructed through the Lax formulation. From the embedding we con-

structed of, we have Ĵ = J + Q, where Q denotes fermionic current. For the supergroup

we deal with, Ĝ = OSp(6|4; R), it is well known that Ĝ admits no outer automorphism of

order four [37]. However, one can easily construct a suitable Z4 inner automorphism. Since

we need the subgroup H is a fixed point set, the automorphism can be defined as a product

of two Z2 involutions on the defining representations of SU(4) ≃ SO(6) and Sp(4) modulo

overall reflection. This then ensures that the G/H current Ĵ = Q1⊕J⊕Q3 is Z4 graded as

[1, 2, 3] and that infinitely many conserved nonlocal currents can be constructed accordingly.

At quantum level, the supergroup Ĝ= OSp(6|4; R) has another nice feature that its

Killing form vanishes identically. This means that sigma model on Ĝ would be conformally

invariant, at least, at one loop. We actually need to quotient Ĝ by bosonic subgroupH and

consider string worldsheet action on the supercoset Ĝ/H. This action in general breaks

the conformal invariance. To restore the conformal invariance, a suitable Wess-Zumino

term needs to be added. It was observed [38] that the requisite Wess-Zumino term can

be constructed provided the bosonic subgroup H is a fixed point set of the Z4 grading

of Ĝ. This is precisely the same condition that ensures the existence of a flat connection

and infinitely many conserved charges thereof. Therefore, the supercoset sigma model is

conformally invariant and can describe consistent string worldsheet dynamics, at least at

one loop order in worldsheet perturbation theory.

Given such mounting evidences, it is highly likely that Type IIA string on AdS4 ×
CP

3 is integrable at λ → ∞ and further extends to λ finite and even to weak coupling

regime.6 With such motivation, we now turn to the main part of this work and investigate

integrability at the weak coupling regime, λ→ 0.

3. Integrable spin chain from Yang-Baxter

The U(N) × U(N) invariant, single-trace operators under consideration

O(I)
(J) ≡ Tr(Y I1Y †

J1
· · · Y ILY †

JL
)

≃ O(J)
(I) ≡ Tr(Y †

J1
Y I1 · · ·Y †

JL
Y IL) (3.1)

are organized according to SUR(4) irreducible representations. Operator mixing under

renormalization and their evolution in perturbation theory can be described by a spin

chain of total length 2L. What kind of spin chain system do we expect? In this section,

viewing the operators (3.1) as a spin chain system and utilizing quantum inverse scattering

method, we shall derive spin chain Hamiltonian.

As is evident from the structure of operators (3.1), the prospective spin chain involves

two types of SUR(4) spins: 4 at odd lattice sites and 4 at even lattice sites. It is thus

natural to expect that the prospective spin chain is an ‘alternating SU(4) spin chain’

consisting of interlaced 4 and 4. To identify the spin system and extract its Hamiltonian,

it is imperative to solve inhomogeneous Yang-Baxter equations of SUR(4) R-matrices with

6We note that the no-go theorem of Goldschmidt and Witten [39] for quantum conservation laws is evaded

in the present case since the isotropy subgroup is not simple, and may lead to quantum anomalies [40].
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varying representations on each site. In fact, a general procedure for solving Yang-Baxter

equations in this sort of situations is already set out in [26]. By construction, resulting

spin chain system will be integrable. In this section, we shall follow this procedure and find

that the putative SU(4) spin chain is an ’alternating spin chain’ involving next-to-nearest

neighbor interactions nested with nearest neighbor interactions.7

We first introduce R
44(u) and R

44̄(u), where the upper indices denote SU(4) repre-

sentations of two spins involved in ‘scattering process’ and u, v denote spectral parameters.

We demand these R-matrices to satisfy two sets of Yang-Baxter equations:

R
44

12 (u− v)R
44

13 (u)R
44

23 (v) = R
44

23 (v)R44

13 (u)R44

12 (u− v) (3.2)

R
44

12 (u− v)R
44̄

13 (u)R
44̄

23 (v) = R
44̄

23 (v)R
44̄

13 (u)R
44

12 (u− v) (3.3)

Here, the lower indices i, j denote that the R matrix is acting on i-th and j-th site Vi⊗Vj of

the full tensor product Hilbert space V1⊗V2⊗· · ·⊗V2L. We easily find that the R-matrices

solving (3.2), (3.3) are given by

R
44(u) = uI + P and R

44̄(u) = −(u+ 2 + α)I + K (3.4)

for an arbitrary constant α. Here, we have introduced identity operator I, trace operator

K, and permutation operator P:

(Ikℓ)
IkIℓ

JkJℓ
= δIk

Jk
δIℓ

Jℓ
(Kkℓ)

IkIℓ

JkJℓ
= δIkIℓδJkJℓ

(Pkℓ)
IkIℓ

JkJℓ
= δIk

Jℓ
δIℓ

Jk
, (3.5)

acting as braiding operations mapping tensor product vector space Vk ⊗ Vℓ to itself.

We also need to construct another set of R-matrices R
4̄4̄(u) and R

4̄4(u) generating

another alternative spin chain system. We again require them to fulfill the respective

Yang-Baxter equations:

R
4̄4̄

12 (u− v)R
4̄4̄

13 (u)R
4̄4̄

23 (v) = R
4̄4̄

23 (v)R
4̄4̄

13 (u)R
4̄4̄

12 (u− v) (3.6)

R
44

12 (u− v)R
4̄4

13 (u)R
4̄4

23 (v) = R
4̄4

23 (v)R
4̄4

13 (u)R
44

12 (u− v) (3.7)

Again, we find that the R-matrices that solve (3.6), (3.7) are given by

R
4̄4̄(u) = uI + P and R

4̄4(u) = −(u+ 2 + ᾱ)I + K , (3.8)

where ᾱ is an arbitrary constant.

In the two sets of Yang-Baxter equations, the constants α, ᾱ are undetermined. We

shall now restrict them by requiring unitarity. The unitarity of the combined spin chain

system sets the following conditions:

R
44(u)R

44(−u) = ρ(u)I

R
4̄4̄(u)R

4̄4̄(−u) = ρ̄(u) I

R
44̄(u)R

4̄4(−u) = σ(u) I (3.9)

7For a construction in SU(3), see [29]. Generalizations to arbitrary Lie (super)algebras and quantum

deformations thereof were studied in [27]–[30].
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where ρ(u) = ρ(−u), ρ̄(u) = ρ̄(−u), σ(u) are c-number functions. It is simple to show that

the first two unitarity conditions are indeed satisfied for any α, ᾱ. It is equally simple

to show that the last unitarity condition is is satisfied only if α = −ᾱ. Without loss of

generality, in what follows, we shall set α = −ᾱ = 0.

Viewing (3.1) as 2L sites in a row, we introduce one transfer T-matrix

T0(u, a) = R
44

01 (u)R44̄

02 (u+ a)R44

03 (u)R44̄

04 (u+ a) · · ·R44

02L−1(u)R
44̄

02L(u+ a) , (3.10)

for one alternate chain and the other T-matrix

T 0(u, ā) = R
4̄4

01 (u+ ā)R4̄4̄

02 (u)R4̄4

03 (u+ ā)R4̄4̄

03 (u) · · ·R4̄4

02L−1(u+ ā)R4̄4̄

02L(u) , (3.11)

for the other alternate chain, where we introduce an auxiliary zeroth space. By the standard

‘train’ argument, one can show that the transfer matrices fulfill the Yang-Baxter equations,

R
44

00′(u− v)T0(u, a)T0′(v, a) = T0′(v, a)T0(u, a)R
44

00′ (u− v) , (3.12)

and

R
4̄4̄

00′(u− v)T 0(u, ā)T 0′(v, ā) = T 0′(v, ā)T 0(u, ā)R
4̄4̄

00′(u− v) . (3.13)

In addition, by a similar argument, one may verify that

R
44̄

00′(u− v + a)T0(u, a)T 0′(v,−a) = T 0′(v,−a)T0(u, a)R
44̄

00′(u− v + a) . (3.14)

We also define the trace of the T matrix by

τalt(u, a) = Tr
0
T0(u, a) . (3.15)

and

τalt(u, ā) = Tr
0
T 0(u, ā) (3.16)

where the trace is taken over an auxiliary zeroth space.

It then follows from the Yang-Baxter equations that

[τalt(u, a), τalt(v, a)] = 0

[τalt(u, ā), τ alt(v, ā)] = 0 , (3.17)

and

[τalt(u, a), τ̄alt(v,−a)] = 0 . (3.18)

Here, in the first two equations, a, ā are arbitrary and denote two undetermined spectral

parameters. These parameters are restricted further if we demand the last equation to hold.

Indeed, the two alternating transfer matrices commute each other if and only if ā = −a.
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As for all other conserved charges, the Hamiltonian is obtained8 by evolving the transfer

T-matrix infinitesimally in spectral parameter u: H = d log τ(u, a)|u=0 where d ≡ ∂/∂u.

By a straightforward computation, we obtain the 44 spin chain Hamiltonian as

H2ℓ−1 = −(2 − a)I − (4 − a2)P2ℓ−1,2ℓ+1

−(a− 2)P2ℓ−1,2ℓ+1K2ℓ−1,2ℓ + (a+ 2)P2ℓ−1,2ℓ+1K2ℓ,2ℓ+1 , (3.19)

where we scaled the Hamiltonian by multiplying (a2 − 4).

By the same procedure, we also find that the Hamiltonian for for the 44 spin chain

is given by

H2ℓ = −(2 + a)I − (4 − a2)P2ℓ,2ℓ+2

+(a+ 2)P2ℓ,2ℓ+2K2ℓ,2ℓ+1 − (a− 2)P2ℓ,2ℓ+2K2ℓ+1,2ℓ+2 , (3.20)

where we have replaced ā by a using the relation ā = −a.
At this stage, any choice of the parameter a is possible in so far as hermiticity of

the Hamiltonian is satisfied. The latter condition requires that a is a pure imaginary

number. Physically, we are interested in the situation where 4 ↔ 4 is a symmetry. This

is nothing but requiring charge conjugation symmetry, equivalently, reflection symmetry

in dual lattice. We thus put a = i09 Adding the two alternate Hamiltonians, we get total

Hamiltonian:10

Htotal =

2L∑

ℓ=1

Hℓ,ℓ+1,ℓ+2 (3.22)

with

Hℓ,ℓ+1,ℓ+2 =
[
4I − 4Pℓ,ℓ+2 + 2Pℓ,ℓ+2Kℓ,ℓ+1 + 2Pℓ,ℓ+2Kℓ+1,ℓ+2

]
. (3.23)

In this derivation, there is always a freedom of shifting ground state energy by an arbitrary

constant. From the outset, we assumed integrability but, except that the symmetry algebra

is SUR(4) and that spins are 4,4 at alternating lattice sites, we did not utilize any inputs

from underlying supersymmetry. With extra input that that supersymmetric ground-state

has zero energy, one can always fix the freedom. The (3.23) is the Hamiltonian after being

shifted by +6 per site accordingly.

8The following derivation of Hamiltonian is valid only for L ≥ 2. This means that the energy eigenvalues

of the following Hamiltonians for the case L = 1 do not agree with true energy eigenvalues.
9Alternatively, one may relax hermiticity of the Hamiltonian and only demand symmetry under parity

and time-reversal, leading to so-called PT-symmetric system [41]. This again sets a to zero. Strictly

speaking, however, this latter condition is weaker than the hermiticity requirement.
10We remark the following useful identities

Pℓ,ℓ+2Kℓ,ℓ+1 = Kℓ+1,ℓ+2Pℓ,ℓ+2, Pℓ,ℓ+2Kℓ+1,ℓ+2 = Kℓ,ℓ+1Pℓ,ℓ+2 . (3.21)

We shall find them useful later when investigating issues concerning wrapping interactions.
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4. Integrable spin chain from Chern-Simons

In this section, we approach integrability from weak ‘t Hooft coupling regime of the su-

perconformal Chern-Simons theory. We use perturbation theory and look for a spin chain

Hamiltonian as a quantum part of the dilatation operator acting on the single trace oper-

ators. As mentioned above, in three-dimensional spacetime, general power-counting indi-

cates that logarithmic divergence arises only at even loop orders. Therefore, leading-order

contribution to anomalous dimension starts at two loops. In general, as well understood

from general considerations of the renormalization theory, the divergence in one-particle

irreducible diagrams with one insertion of a composite operator contain divergences that

are proportional to other composite operators. Therefore, at each order in perturbation

theory, all composite operators whose divergences are intertwined must be renormalized

simultaneously. In addition, renormalization of elementary fields needs to be taken into

account. This leads to the general structure:

OM
bare(Ybare, Y

†
bare) =

∑

N

ZM
NON

ren(ZYren, ZY
†
ren) (4.1)

For the operators we are interested in, this takes the form of

OM
bare =

∑

N

ZM
N (Λ)ON

ren (4.2)

with the UV cut-off scale Λ. Therefore, the anomalous dimension matrix ∆ is given by

∆ =
d logZ

d log Λ
. (4.3)

In the rest of this section, we compute anomalous dimension matrix for the single trace

operators that were associated with the ‘alternating spin chain’ in the last section:

O(I)
(J)

= Tr
(
Y I1Y †

J1
Y I2Y †

J2
· · ·Y ILY †

JL

)
. (4.4)

In N = 6 superconformal Chern-Simons theory, the scalar fields Y I , Y †
I are bifundamental

fields of U(N)×U(N) gauge group, and transform as 4 and 4 of SUR(4) R-symmetry group.

In appendix A, we explain field contents and action of the theory in detail.11 Schematically,

the action of the ABJM theory takes the form

I =

∫

R2,1

k

4π

(
CS(A) − CS(A)

)
− Tr(DY )†IDY

I + Tr ΨI†iD/ΨI − VF − VB. (4.5)

Here, the Chern-Simons density is given by

CS(A) = ǫmnp Tr

[
Am∂nAp +

2i

3
AmAnAp

]
. (4.6)

Covariant derivatives are denoted as Dm, while self-interactions involving bosons and

fermion pairs are denoted by VB, VF, respectively. See appendix A for their explicit form.

We will recall them at relevant points in foregoing discussions.

11We closely follow notation and convention of [42].
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To extract the dilatation operator, we compute the correlation functions

〈
O(I)

(J)Tr(Y †
I1
Y J1 · · · Y †

IL
Y JL)

〉
for L→ ∞ (4.7)

by summing over all planar diagrams in perturbation theory in ‘t Hooft coupling λ.

In evaluating so, there arises an important issue regarding consistency of regularization

with gauge invariance and N = 6 supersymmetry. We shall adopt dimensional reduction

method (See, for example, discussions in [43]). This method retains ǫmnp and Dirac matrices

always three-dimensional. In each Feynman integral, we then manipulate the integrand

until all ǫmnp and Dirac matrices are eliminated and the integral is reduced to a Lorentz

scalar expression. We then employ dimensional regularization and evaluate the integral.

Still, this leaves out infrared divergences that would have been absent were if the theory

four-dimensional. As we will be only concerned with logarithmic ultraviolet divergences, we

will take a practical approach that we regularize infrared divergences by introducing mass

terms in evaluating Feynman integrals in dimensional regularization. We then remove

the regulator mass first and then take the spacetime dimension to three. Previously, it

was checked that the dimensional reduction method is consistent with Slavnov-Taylor-

Ward identities. Yet, to date, it is not known if the method is compatible with N = 6

supersymmetry. Thus, in our computations, we shall not assume a priori any input related

to supersymmetry. Rather, we will put our result to a test against various consequences of

supersymmetry — for instance, vanishing anomalous dimensions of chiral primary operators

and superconformal nonrenormalization theorems.

Using the convention and Feynman rules explained in appendix, we computed all two-

loop diagrams that contribute to anomalous dimensions of elementary fields Y I , Y †
I and

composite operators O(I)
(J). Acting on the space of the operators, each Feynman diagram can

be attributed to the braiding operations I, K, P introduced in (3.5) and their combinations.

At two loops, we computed the complete set of Feynman diagrams that contribute to each

of these operators. The result turned out

H2−loops = λ2
2L∑

ℓ=1

[
I − Pℓ,ℓ+2 +

1

2
Pℓ,ℓ+2Kℓ,ℓ+1 +

1

2
Pℓ,ℓ+2Kℓ+1,ℓ+2

]
(4.8)

and this is precisely λ2

4 times the alternating spin chain Hamiltonian (3.23) we derived

from SU(4) Yang-Baxter equations in the last section. In the rest of this section, we

explain essential steps for deriving the Hamiltonian and relegate technical details of evalu-

ating Feynman diagrams in the appendix. We find it convenient to organize contributing

Feynman diagrams according to the number of sites that participate in the Hamiltonian.

Three-site scalar interactions. A salient feature of the alternating spin chain Hamil-

tonian we extracted in section 3 from coupled Yang-Baxter equations is that it contains

interactions up to next-nearest-neighbor sites. We thus need to see if such interaction arises

from superconformal Chern-Simons planar diagrams and, if so, if the interactions are of the

same type. From the Feynman rules (see appendix A), it is evident that scalar interaction

– 11 –
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k

l

k + l
O

Figure 1: Two loop contribution of scalar sextet interaction to anomalous dimension of O.

k

k + ll

k

O

(a)

k

k + ll

k

O

(b)

k

k + l

k l

l

O

(c)

Figure 2: Two loop contribution of gauge and fermion exchange interaction to anomalous dimen-

sion of O.

−VB in (4.5) is the source of three-site interactions, whose explicit form is given by

VB = −1

3

(
2π

k

)2

Tr
[
Y †

I Y
JY †

J Y
KY †

KY
I + Y †

I Y
IY †

J Y
JY †

KY
K

+4Y †
I Y

JY †
KY

IY †
J Y

K − 6Y †
I Y

IY †
J Y

KY †
KY

J
]

(4.9)

The two-loop Feynman diagram is depicted in figure 1. From planar diagram combinatorics

of gauge invariant operators at infinite length 2L → ∞, we find the following contribu-

tions arising: Kℓ,ℓ+1 + Kℓ+1,ℓ+2 from the first two terms, Pℓ,ℓ+2 from the third term, and

I+Pℓ,ℓ+2Kℓ,ℓ+1+Pℓ,ℓ+2Kℓ+1,ℓ+2 from the last term. Taking account of combinatorial multi-

plicities, we find that the scalar sextet potential contributes to the dilatation Hamiltonian as

HB = λ2
2L∑

ℓ=1

[
1

2
I − Pℓ,ℓ+2 +

1

2
Pℓ,ℓ+2Kℓ,ℓ+1 +

1

2
Pℓ,ℓ+2Kℓ+1,ℓ+2 −

1

2
Kℓ,ℓ+1

]
(4.10)

(see appendix B2). Evidently, compared to the anticipated alternating spin chain Hamilto-

nian, we have discrepancy in on-site (proportional to I) and nearest neighbor (proportional

to K) terms. These are interactions that would arise from gauge or fermion-pair exchange

interactions and from wave function renormalization of elementary fields Y, Y †.

Two-site gauge and fermion interactions. The scalar fields Y I , Y †
I are bifundamen-

tals of U(N) × U(N). Their gauge interactions can be read off from covariant derivatives:

DmY
I = ∂mY

I + iAmY
I − iY IAm and DmY

†
I = ∂mY

†
I + iAmY

†
I − iY †

I Am . (4.11)

As usual, there are paramagnetic interactions (minimal coupling) and diamagnetic inter-

actions (seagull coupling). We see that gauge interactions contribute to two-site terms for

both I and K. Two relevant Feynman diagrams are (a) and (c) in figure 2.

The Feynman diagram contributing to I operator arises from square of diamagnetic

interactions in t-channel. See figure 2(a). This diagram is infrared divergent for each
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subgraphs. We regulate them by giving a mass to internal propagators. Upon removing

the regulator mass to zero, we find a finite part. However, this part turned out ultra-

violet convergent and hence does not contribute to anomalous dimension. The Feynman

diagram contributing to K operator arises from product of diamagnetic interaction and

two paramagnetic interactions. See figure 2(c). Taking the net momentum of O to zero,

which is sufficient for extracting anomalous dimension, we find that only one orientation

of diamagnetic interaction vertex yields nonvanishing result. For details of Feynman rules

of gauge interactions and Feynman diagram evaluation, see appendix B3. We found that

gauge interactions contribute to the dilatation operator by

Hgauge = λ2
2L∑

ℓ=1

[
− 1

4
I − 1

2
Kℓ,ℓ+1

]
. (4.12)

Consider next two-site terms induced by fermion-pair exchange diagrams. The relevant

part of the Lagrangian in (4.5) is the fermion-pair potential:

VF =
2πi

k
Tr
[
Y †

I Y
IΨ†JΨJ − 2Y †

I Y
JΨ†IΨJ + ǫIJKLY †

I ΨJY
†
KΨL

]

−2πi

k
Tr
[
Y IY †

I ΨJΨ†J − 2Y IY †
J ΨIΨ

†J + ǫIJKLY
IΨ†JY KΨ†L

]
. (4.13)

From Feynman rules, we see that planar diagrams formed by square of the second terms in

both lines in (4.13) give rise to K interactions to the two-loop dilatation operator. See fig-

ure 2(b) for the relevant Feynman diagram and appendix B3 for the details of computation.

In fact, at planar approximation, there is no other Feynman diagrams that contribute

to two-site interactions.12 Taking account of numerical weights in (4.13), we find that the

fermion potential contributes to the dilatation Hamiltonian as

HF = λ2
2L∑

ℓ=1

Kℓ,ℓ+1 . (4.14)

One-site interactions: wave function renormalization. Adding up all the two-site

interactions to the three-site interaction, we see that terms involving K operator cancel out

one another. On the other hand, terms involving I operator add up to (1/4)λ2. So, up to

overall (volume-dependent) shift of the ground state energy, the dilatation operator agrees

with the alternating spin chain Hamiltonian we derived in the previous section. As we are

dealing with superconformal field theory, spectrum of dilatation generator bears an absolute

meaning. Moreover, there could be potential clash between dimensional reduction we

used and superconformal invariance. Therefore, to ensure internal consistency of quantum

theory, we shall now compute terms arising from wave function renormalization of Y, Y †.

These are all the remaining contributions to anomalous dimension of composite operator O.

Wave function renormalization to Y, Y † arises from all three types of interactions.

Even though there are huge numbers of planar Feynman diagrams that could potentially

12For L = 1, however, there will be wrapping interactions. We will discuss them in detail in the next

section.
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p k + p

l

p

k + l

(a) (b) (c)

Figure 3: Two loop contribution of diamagnetic gauge interactions to wave function renormaliza-

tion of Y, Y †. They contribute to I operator in the dilatation operator.

p p+ k p+ k + l p+ l

k

p

l
(a) (b)

Figure 4: Two loop contribution of paramagnetic gauge interactions to wave function renormal-

ization of Y, Y †. They contribute to I operator in the dilatation operator.

p p+ k p− l

k + l

p

k l

(a) (b)

Figure 5: Two loop contribution of Chern-Simons interaction to wave function renormalization of

Y, Y †. They contribute to I operators in the dilatation operator.

contribute to wave function renormalization, a vast number of them vanishes identically

or cancel one another. First, diagrams involving gauge boson loops either vanish because

of parity-odd nature of the gauge boson propagators or cancel among U(N) and U(N)

diagrams.13 Nonzero contribution arise only from diamagnetic interactions shown in fig-

ure 3, from paramagnetic interactions shown in figure 4, and from Chern-Simons cubic

interactions shown in figure 5.

Second, diagrams involving vertices in the first and the second lines in VF (4.13) cancel

by combinatorics and relative coefficients. Hence, the cancellation is attributable to N = 6

supersymmetry. The only surviving diagram arise from cross term of vertices in the last

line in (4.13). The Feynman diagram is shown in figure 6.

Third, there are also contributions coming from gauge-matter interactions. Again,

almost all diagrams vanish because of parity-odd nature of gauge boson propagator. The

only surviving diagrams involve parity-even vacuum polarization, as shown in figure 7.

Their computations are summarized in appendix B4. We also present the analysis of the

one-loop vacuum polarizations in appendix B5.

13Notice that gauge boson propagator for U(N) and U(N) gauge groups have weight +k and −k, respec-

tively.
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p k + p

l

p

k + l

(a) (b) (c)

Figure 6: Two loop contribution of fermion pair interaction to wave function renormalization of

Y, Y †. They contribute to I operators in the dilatation operator.

p k + l + p p

klk

k + l

(a) (b) (c) (d)

Figure 7: Two loop contribution of vacuum polarization to wave function renormalization of Y, Y †.

Both U(N) and U(N) gauge parts give additive contributions.

Summing up all these wave function renormalization to Y, Y †, we find their contribution

to the dilatation operator as

HZ = λ2

[(
1

12
+

2

3
+

1

3

)
+

(
4

3
+ 1

)
− 8

3

] 2L∑

ℓ=1

I

= λ2
2L∑

ℓ=1

3

4
I (4.15)

In the first line, the first parenthesis is the contribution from gauge fields: diamagnetic in-

teractions, paramagnetic interactions, and Chern-Simons interactions. The second paren-

thesis is the contribution from fermion fields. The last term is the contribution of vacuum

polarization. Adding up all the contributions,

Htotal = HB +HF +Hgauge +HZ (4.16)

we get the result (4.8). As claimed, this is precisely the alternating spin chain Hamiltonian

we obtained from mixed set of Yang-Baxter equations. As such, we conclude that dilatation

operator of N = 6 superconformal Chern-Simons theory of ABJM is integrable at two loops.

We stress the importance of explicit and direct computation of the dilatation operator

without a prior assumption relying on supersymmetry or integrability. It is satisfying that

the result passes various compatibility tests. For instance, take chiral primary operators.

These are subset of the single trace operators O where Y ’s and Y †’s are totally symmetric

and traceless under any contraction between Y ’s and Y †’s, and corresponds to massive

Kaluza-Klein modes over CP
3 in the Type IIA supergravity dual. Because of supersym-

metry, their scaling dimension should be protected against radiative corrections. Indeed,
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acting on these operators, Htotal vanishes since contribution of terms involving K operator

are null and contribution of P cancel against that of I. As a corollary, the fact that our

result is consistent with expectation from supergravity dual implies that the dimension re-

duction method we adopted for computations are compatible not only with Slavnov-Taylor

identities of the gauge symmetry but also with N = 6 supersymmetry.

5. The shortest chain and wrapping interactions

In deriving the dilatation operator in the last section, we assumed that the gauge invari-

ant operator is infinitely long, L → ∞. From planar diagrammatics, we see easily that

dilatation operator computed perturbatively up to the order 2ℓ will give rise to a spin

chain Hamiltonian whose range extends to (2ℓ)-th order. Therefore, for operators of finite

length, a new set of planar diagrams which wraps around the operator will come in to con-

tribute. These are so-called wrapping interactions, a feature discussed much in the context

of integrability of four-dimensional N = 4 super Yang-Mills theory [12, 44]–[53].

In N = 6 superconformal Chern-Simons theory, the situation is more interesting. Since

the dilatation operator at two loops ranges over three sites, spectrum of the shortest gauge

invariant operator of length 2L = 2 will receive contributions from wrapping diagrams

already at leading order! In this section, we like to identify these wrapping interactions for

the shortest gauge invariant operators and discuss their implications.

Let us denote basis of the shortest operators as

|I1I2〉 = TrY I1Y †
I2

= OI1I2 ∈ 4 ⊗ 4 . (5.1)

The 4 ⊗ 4̄ representation is decomposed irreducibly into the traceless part, 15, and the

trace part, 1. The multiplet 15 is chiral primary operator, so their conformal dimension

ought to be protected by supersymmetry.

To check this, let us first identify the two-site dilatation operator that includes the

wrapping interactions. At two-loop orders, the scalar sextet interaction does not contribute

to length-2L = 2 operators since only four legs can be connected to the operators, leaving

a tadpole that vanishes identically. Hence the dilatation operator consists of the two-site

plus wave function renormalization parts plus wrapping contributions.

From the computations of section 4, the original two-site contributions comprise of two-

loop diagrams from gauge interactions and from VF interactions. Their contributions are

H2 =

[(
− 1

2
K − 1

4
I

)
λ2 + Kλ2

]
× 2 =

(
K − 1

2
I

)
λ2 . (5.2)

In the first line, the first term is the contribution of gauge interaction diagrams and

the second term is the contribution of VF interactions. We computed total energy, so

multiplied the energy density by the spin chain volume 2L = 2. The one-site contribution

arising from the wave function renormalization is

H1 =
3

4
λ2

I × 2 =
3

2
λ2

I . (5.3)
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Figure 8: Two loop wrapping interaction contribution to the shortest gauge invariant operators.

(a) fermion field wrapping, (b) gauge field wrapping, (c) a new gauge triangle.

Adding these two and acting on 15 in (5.1), we see that anomalous dimension of the chiral

primary operator is non-vanishing. If our regularization method of dimensional reduction

plus infrared mass regularization were compatible with supersymmetry, there must be

other contributions heretofore unaccounted that would cancel against the non-vanishing

contribution (5.3) and protect the anomalous dimension of chiral primary operator from

quantum corrections. These are precisely wrapping interactions.

Indeed, for the shortest operators of L = 1 under consideration, there are three classes

of nontrivial wrapping interactions. We now summarize their contribution and relegate

details of Feynman diagram evaluation to appendix C.

There is the gauge field wrapping contribution with the diamagnetic interactions as in

figure 8 (a). Its contribution is

HgIw = λ2
I . (5.4)

There is also the fermion field wrapping contribution as in figure 8 (b). Its contribution is

Hyw = 2 (K − I)λ2 . (5.5)

It is important to note that these two wrapping interactions utilizes simultaneously U(N)

and U(N) interactions. Thus, this contribution arises not just by distinct topology of

planar diagram but from very different interactions from the original, unwrapped two-site

interactions.

There is also a doubling-type wrapping contribution of using the same gauge group

interactions. This happens only for the gauge interaction diagram contributing to K oper-

ator. Moreover, the contribution is doubled since there are two distinct ways of wrapping.

This is best illustrated on a cylinder, from which we see that there are two different kinds of

topology of wrapped Feynman diagrams. From appendix C, we identify this contribution as

HgKw = −λ2
K . (5.6)

Putting both the original and the wrapping diagram contributions together, the full

Hamiltonian of 2L = 2 operator is given by

H2L=2 = 2λ2
K . (5.7)

Notice that the part proportional to I operator is canceled between the original and the

wrapping interaction contributions. One thus check that the chiral primary operators 15
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indeed has a vanishing anomalous dimension since, by definition, it has no trace part and

is annihilated by K operator. For the singlet 1, |s〉 = 1
2 |II〉, the anomalous dimension is

H|s〉 = 8 λ2 |s〉 . (5.8)

It is interesting to compare the above spectrum with spectrum of the naive Hamiltonian

Hnaive, viz. the alternating spin chain Hamiltonian with periodic boundary condition and

2L = 2. The latter is14

Hnaive = λ2
2∑

ℓ=1

[
I − Pℓ,ℓ+2 +

1

2
Kℓ+1,ℓ+2Pℓ,ℓ+2 +

1

2
Kℓ,ℓ+1Pℓ,ℓ+2

]

ℓ+2=ℓ

= 2λ2
K , (5.9)

for 2L = 2. Acting on 15 and 1 states, we find that their anomalous dimension is 0

and 4 · 2λ2, respectively. So far, we computed the spectrum of the shortest operators

without a priori assumption of supersymmetry. As a consistency check, we now compare

these spectra with their superpartners. Recall that length 2ℓ operators with Dynkin labels

(ℓ−2m,m+n, ℓ−2n) and length 2ℓ−2 operators with Dynkin labels (ℓ−2m,m+n−2, ℓ−2n)

are superpartners each other. Here, we have the simplest situation: the L = 1 operator 1

of Dynkin labels (0, 0, 0) is the superpartner of L = 2 operator 20 of Dynkin labels (0, 2, 0).

Fortuitously, anomalous dimension of the latter was computed at two loops in [23] to be

8λ2, and matches perfectly with our computation.15 Note that, at two loop order, the

L = 2 operator 20 does not receive any wrapping interaction corrections. As such, we

may consider agreement of the anomalous dimensions between the two superpartners as a

nontrivial confirmation for the wrapping interactions we studied for the L = 1 operator 1.

We should also note that the naive Hamiltonian is not the right dilatation operator

for the shortest operators. Nevertheless, interestingly, the spectrum of naive Hamiltonian

coincides with the spectrum extracted from the true two-site Hamiltonian. It would be very

interesting to see whether this coincidence persists to higher orders in perturbation theory.

6. Bethe ansatz diagonalization

In section 3, we constructed transfer matrix. To obtain spectrum, we need to diagonalize

the transfer matrices. Within algebraic Bethe ansatz, a fairly general result is known

for a Lie (super)groups G [31, 27, 30]. It suffices to adapt the results to the case that

G = SU(4).16 Dynkin diagram of SU(4), drawn horizontally, has three roots: left(l),

middle(m), and right(r). The diagonalization is specified by the choice of Dynkin label

(Rl, Rm, Rr) for the site representation R and total number of sites LR that representation

occupies. In the present case, we have placed 4 and 4 representations at alternating lattices,

so Rl = Rr = 1, Rm = 0 and L4 = L
4

= L. Each excitation is associated with three

sets of Bethe ansatz rapidities (la,mb, rc)’s whose labels range over [1, Nl], [1, Nm], [1, Nr ],

respectively. It belongs to the SU(4) representation with the Dynkin labels (L − 2Nl +

14Here, we used the identities (3.21).
15We thank Joe Minahan and Kostya Zarembo for useful correspondences on this issue.
16For SU(3) alternating spin chain, this was done explicitly in [29].
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Nm, Nl +Nr − 2Nm, L− 2Nr +Nm). Positivity of the Dynkin labels restricts range of the

three Bethe ansatz rapidities accordingly. Then, choosing the highest-weight state:

|Ω+〉 =

L∏

ℓ=1

⊗|1〉2ℓ−1|4〉2ℓ ≡ |1414 · · · 〉 (6.1)

as the ground-state, the eigenvalue of the transfer matrix T0(−u)17 is found to be

Λ(u) = (u− 1)L(u− 2)L
Nl∏

a=1

u− ila + 1
2

u− ila − 1
2

+ uL(u− 1)L
Nr∏

c=1

u− irc − 5
2

u− irc − 3
2

(6.2)

+uL(u− 2)L

[
Nl∏

a=1

u− ila − 3
2

u− ila − 1
2

Nm∏

b=1

u− imb − 0

u− imb − 1
+

Nm∏

b=1

u− imb − 2

u− imb − 1

Nr∏

c=1

u− irc − 1
2

u− irc − 3
2

]
.

We have chosen the Bethe rapidities symmetric between the three roots. Keeping the

highest weight state the same |1414 · · · 〉, we also find that diagonalization of the second

transfer matrix T 0(−v) proceeds much the same way as that of T0(−v) except that we

interchange role of the left and the right SU(4) roots:

Λ(v) = vL(v − 1)L
Nl∏

a=1

v − ila − 5
2

v − ila − 3
2

+ (v − 1)L(v − 2)L
Nr∏

c=1

v − irc + 1
2

v − irc − 1
2

(6.3)

+vL(v − 2)L

[
Nl∏

a=1

v − ila − 1
2

v − ila − 3
2

Nm∏

b=1

v − imb − 2

v − imb − 1
+

Nm∏

b=1

v − imb − 0

v − imb − 1

Nr∏

c=1

v − irc − 3
2

v − irc − 1
2

]
.

Mutually commuting conserved charges are then constructed by expanding these eigenval-

ues around u, v = 0. The first two charges are the total momentum and the total energy:

Ptotal =
1

i

[
log Λ(u) + log Λ(u)

]
u=0

=

Nl∑

a=1

log

(
la + i/2

la − i/2

)
+

Nr∑

b=1

log

(
rb + i/2

rb − i/2

)
, (6.4)

Etotal = λ2
[ d

du
(log Λ(u) + log Λ(u))

]
u=0

= λ2

(
Nl∑

a=1

1

l2a + 1
4

+

Nr∑

b=1

1

r2b + 1
4

)
. (6.5)

Here, we chose fundamental domain of the momentum to [0, 2π) and scaled the total energy

by λ2 in accordance to the relation we fixed between Hamiltonian derived from Yang-Baxter

equation and from superconformal Chern-Simons theory. Likewise, we can deduce higher

conserved charges from higher moments of the transfer matrices.

The Bethe equations that results from the above transfer matrix eigenvalues Λ,Λ are

(
la − i

2

la + i
2

)L

=

Nl∏

b=1(b6=a)

la − lb − i

la − lb + i

Nm∏

c=1

la −mc + i
2

la −mc − i
2

17For later convenience, we choose to diagonalize T0 for opposite sign of the spectral parameter u.
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1 =
Nm∏

b=1(b6=a)

ma −mb + i

ma −mb − i

Nl∏

c=1

ma − lc − i
2

ma − lc + i
2

Nr∏

d=1

ma − rd − i
2

ma − rd + i
2

(
ra − i

2

ra + i
2

)L

=
Nr∏

b=1(b6=a)

ra − rb − i

ra − rb + i

Nm∏

c=1

ra −mc + i
2

ra −mc − i
2

. (6.6)

It is straightforward to check that these same set of Bethe ansatz equations remove potential

simple pole terms for both Λ and Λ simultaneously.

From the integrability perspectives, (2+1)-dimensional superconformal Chern-Simons

theory is quite different from (3+1)-dimensional super Yang-Mills theory. The most distinct

feature is that the spin chain associated with dilatation operator is not homogeneous but

alternating. It calls for better understanding to questions that arise in comparison with

N = 4 super Yang-Mills counterpart. We shall now study spectrum of the Bethe ansatz

equations for a few simpler situations and gather features concerning excitations of the

alternating spin chain system.

First, consider the special class of Nm = 0 for arbitrary L ≥ 2. The first and the third

Bethe ansatz equations decouple, and each equation becomes the same as the Bethe ansatz

equation of the well-known SU(2) XXX 1

2

spin chain. Thus, if one can identify the first set

with SU(2) of 4 side, then the third equation corresponds to SU(2) of 4̄. We then have

two decoupled sets of the solution including towers of bound states, and they are exactly

the same as the XXX 1

2

spin chain.

Now let us consider the case Nl = Nm = Nr = 1 case for a general L ≥ 2. The Bethe

ansatz equations are reduced to

(
l − i

2

l + i
2

)L

=
l −m+ i

2

l −m− i
2

m =
1

2
(l + r)

(
r − i

2

r + i
2

)L

=
r −m+ i

2

r −m− i
2

. (6.7)

In terms of the individual momentum variables, after using the second equation, the com-

bination of the first and the third equations becomes

ei(pl+pr)L = 1 . (6.8)

This is solved by

P = pl + pr =
2πn

L
, (n = 0, 1, 2, . . . , L− 1) . (6.9)

First, consider m = 0 case. In this case, total momentum P = 0. For the relative

momentum q ≡ (pl − pr), we also have

eiq(L+1)/2 = 1 . (6.10)
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This is solved by

q

2
=

2πZ

L+ 1
(6.11)

showing that there are in fact (L + 1) independent states. In this case, the energy (6.5)

is given by

E = 8λ2 sin2 q

4
. (6.12)

This is the simplest example of two-particle excitations where 4 and 4 excitations are

correlated. The total momentum is zero, while total energy depends on relative momentum.

Consider next general m. From the ratio between the first and the third equations,

we obtain

ei
q

2
L = ∓ l− r − i

l− r + i
, (6.13)

where we used the second Bethe ansatz equation for simplification. Total momentum P is

nonzero. Furthermore, expressing this equation in terms of P and q, we find the relations:

cos
P

2
=

sin q
4(L+ 2)

sin q
4L

or
cos q

4 (L+ 2)

cos q
4L

. (6.14)

If q is real, viz. two real Bethe roots, the relation shows that relative momentum q

is correlated with total momentum P . That is, even though there are two excitations

associated with 4 and 4 chains, their motion exhibits mutual correlation. If q were

imaginary, viz. a Bethe string, the relation shows that total momentum ought to be

purely imaginary. This show that there cannot arise any bound-state between 4 and 4

spins. Though this argument is established for the compact SU(4) sector, we expect our

conclusion also extends to the noncompact Sp(4) sector.

We can also comment on thermodynamic limit in which densities of the Bethe roots

are kept finite. By taking L → ∞ limit of the Bethe ansatz equations and taking the

so-called ”no hole” excitation condition, we obtain relations among the three Bethe root

densities ρl(x), ρm(x), ρr(x). From the first and the third Bethe ansatz equations, after

Fourier transform, we find

ρl(k) = ρr(k) . (6.15)

This has a simple interpretation: because the alternating spin chain is manifestly charge-

conjugation invariant, excitations ought to be so as well. Moreover, from the second Bethe

ansatz equation, we obtain

ρm(k)e−|k|/2 =
1

2

[
ρl(k) + ρr(k)

]
. (6.16)

It immediately follows from these two equations that the mean value of root densities

Nl

L
=
Nr

L
and

Nm

L
=

1

2

(
Nl

L
+
Nr

L

)
. (6.17)
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We conclude that all three Bethe root densities are equal, and hence 4’s and 4’s are equally

populated and balanced each other for the minimum energy configuration.

Furthermore, analysis of the shortest operator suggests that excitation in supercon-

formal Chern-Simons spin chain is different from excitation in N = 4 super Yang-Mills

spin chain. In the latter, the vacuum is ferromagnetic and excitations break SOR(6) to

[SU(2)]2. The latter is the symmetry group of dilute, finite-energy excitations. In the

present case, analysis of the previous section seems to indicate that excitation is organized

by the full SU(4), not by any subgroup of it. This is because the finite energy excitation

is a singlet of SU(4), not of any subgroup of it. Lastly, in this system, excitations with

Nm = 0 comprises of two decoupled XXX 1

2

spin chains with its own ferromagnetic vac-

uum, respectively. Though this is certainly a closed subsector, general excitations in the

full system looks quite different, as is seen above in the simple situation of Nm = 1.

Following the general prescription [30] and paving the parallels to what was done in

the context of N = 4 super Yang-Mills theory [8], extending the SU(4) spin chain to the

OSp(6|; R) superspin chain and writing down Bethe ansatz equations are immediate and

straightforward. This was done already in [23]. More recently, spectrum in the Penrose

limit [54], various SU(2|2) closed subsectors [32], all loop Bethe ansatz equations [55], and

finite-size effects [56] were studied. With these developments, it would be interesting to

explore precision tests for the new correspondence proposed by ABJM.

Acknowledgments

We would like to thank Dongmin Gang for extensive Mathematica check on an issue

related to integrability and to David Berenstein, Hyunsoo Min, Joe Minahan, Takao

Suyama, Satoshi Yamaguchi, Kostya Zarembo for correspondences and discussions. This

work was supported in part by R01-2008-000-10656-0 (DSB), SRC-CQUeST-R11-2005-021

(DSB,SJR), KRF-2005-084-C00003 (SJR), EU FP6 Marie Curie Research & Training

Networks MRTN-CT-2004-512194 and HPRN-CT-2006-035863 through MOST/KICOS

(SJR), and F.W. Bessel Award of Alexander von Humboldt Foundation (SJR). S.J.R.

thanks the Galileo Galilei Institute for Theoretical Physics for hospitality during the

course of this work.

A. Notation, convention and Feynman rules

A.1 Notation and convention

• R
1,2 metric:

gmn = diag(−,+,+) with m,n = 0, 1, 2.

ǫ012 = −ǫ012 = +1 (A.1)

ǫmpqǫmrs = −(δp
r δ

q
s − δp

sδ
q
r); ǫmpqǫmpr = −2δq

r
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• R
1,2 Majorana spinor and Dirac matrices:

ψ ≡ two-component Majorana spinor

ψα = ǫαβψβ, ψα = ǫαβψ
β where ǫαβ = −ǫαβ = iσ2

γm
α

β=(iσ2, σ3, σ1), (γm)αβ=(−I, σ1,−σ3) obeying γmγn=gmn−ǫmnpγp.(A.2)

A.2 ABJM theory

• Gauge and global symmetries:

gauge symmetry : U(N) ⊗ U(N)

global symmetry : SU(4) (A.3)

We denote trace over U(N) and U(N) as Tr and Tr, respectively.

• On-shell fields are gauge fields, complexified Hermitian scalars and Majorana spinors

(I = 1, 2, 3, 4):

Am : Adj (U(N)); Am : Adj U(N)

Y I = (X1 + iX5,X2 + iX6,X3 − iX7,X4 − iX8) : (N,N;4)

Y †
I = (X1 − iX5,X2 − iX6,X3 + iX7,X4 + iX8) : (N,N;4)

ΨI = (ψ2 + iχ2,−ψ1 − iχ1, ψ4 − iχ4,−ψ3 + iχ3) : (N,N;4)

Ψ†I = (ψ2 − iχ2,−ψ1 + iχ1, ψ4 + iχ4,−ψ3 − iχ3) : (N,N;4) (A.4)

• action:

I =

∫

R1,2

[
k

4π
ǫmnpTr

(
Am∂nAp+

2i

3
AmAnAp

)
− k

4π
ǫmnpTr

(
Am∂nAp+

2i

3
AmAnAp

)

+
1

2
Tr
(
−(DmY )†ID

mY I +iΨ†ID/ΨI

)
+

1

2
Tr
(
−DmY

I(DmY )†I +iΨID/Ψ
†I
)

−VF − VB

]
(A.5)

Here, covariant derivatives are defined as

DmY
I = ∂mY

I + iAmY
I − iY IAm , DmY

†
I = ∂mY

†
I + iAmY

†
I − iY †

I Am (A.6)

and similarly for fermions ΨI ,Ψ
†I . Potential terms are

VF =
2πi

k
Tr
[
Y †

I Y
IΨ†JΨJ − 2Y †

I Y
JΨ†IΨJ + ǫIJKLY †

I ΨJY
†
KΨL]

−2πi

k
Tr[Y IY †

I ΨJΨ†J − 2Y IY †
J ΨIΨ

†J + ǫIJKLY
IΨ†JY KΨ†L

]
(A.7)
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and

VB = −1

3

(
2π

k

)2

Tr
[
Y †

I Y
JY †

J Y
KY †

KY
I + Y †

I Y
IY †

J Y
JY †

KY
K

+4Y †
I Y

JY †
KY

IY †
J Y

K − 6Y †
I Y

IY †
J Y

KY †
KY

J
]

(A.8)

At quantum level, since the Chern-Simons term shifts by integer multiple of 8π2,

not only N but also k should be integrally quantized. To suppress the cluttering 2π

factors, we also use the notation κ = k
2π . At large N , we expand the theory and

physical observables in double series of

gst =
1

N
, λ =

N

k
=

N

2πκ
(A.9)

by treating them as continuous perturbation parameters.

A.3 Feynman rules

• We adopt Lorentzian Feynman rules and manipulate all Dirac matrices and ǫmnp

tensor expressions to scalar integrals. For actual evaluation of these integrals, we

shall go the Euclidean space integral by the Wick rotation, which corresponds to

x0 → −iτ . In the momentum space, this means we change the contour of p0 to the

imaginary axis following the standard Wick rotation. Then in terms of integration

measure, we simply replace d2ωk → id2ωkE together with p2 → +p2
E. The procedure

is known to obey Slavnov-Taylor identity, at least to two loop order.

• We choose covariant gauge fixing condition for both gauge groups:

∂mAm = 0 and ∂mAm = 0 (A.10)

and work in Feynman gauge by setting the gauge parameter ξ to unity. Accordingly,

we introduce a pair of Faddeev-Popov ghosts c, c and their conjugates, and add to I

the ghosts action:

Ighost =

∫

R2,1

[
Tr∂mc∗Dmc+ Tr∂mc∗Dmc

]
(A.11)

Here, Dmc = ∂mc+ i[Am, c] and Dmc = ∂mc+ i[Am, c].

• Propagators in U(N) × U(N) matrix notation:

gauge propagator : ∆mn(p) =
2π

k
I
ǫmnrp

r

p2 − iǫ

scalar propagator : DI
J(p) = δJ

I

−i
p2 − iǫ

fermion propagator : SI
J(p) = δI

J

ip/

p2 − iǫ

ghost propagator : K(p) =
−i

p2 − iǫ
(A.12)
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• Interaction vertices are obtained by multiplying i =
√
−1 to nonlinear terms of the

Lagrangian density. Note that the paramagnetic coupling of gauge fields to scalar

fields has the invariance property under simultaneous exchange between Am, Y
I and

Am, Y
†
I .

B. Two-loop computations

B.1 Two-loop integrals

We first tabulate various Feynman integrals that appear recurrently among two-loop dia-

grams. They are all evaluated straightforwardly by Feynman parametrization

1

AaBb
=

Γ(a+ b)

Γ(a)Γ(b)

∫ ∫
dxdyδ(1 − x− y)

xa−1yb−1

(Ax+By)a+b
. (B.1)

We use dimensional regularization by shifting the spacetime dimension to d = 2ω = 3 − ǫ.

The ultraviolet divergence shows up as a simple pole 1/ǫ. It is related to the momentum

space cutoff Λ as

1

ǫ
:= 2 log Λ . (B.2)

In the following, we collect factors arising from propagators in parenthesis and those from

vertices in square bracket. We have the following integrals:

• I1 =

∫
d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k + ℓ)2
1

k2

1

ℓ2

=

∫ 1

0
dx

∫
d2ωℓ

(2π)2ω

1

ℓ2

∫
d2ωk

(2π)2ω

1

[k2 + 2xk · ℓ+ xℓ2]2

= − 1

8π

∫ 1

0
dx

1√
x(1 − x)

∫
d2ωℓ

(2π)2ω

1√
(k2)3

= +
1

8

1

4π2

1

ǫ
. (B.3)

The integral that appears in fermion and gauge boson exchange diagrams is:

• I2 =

∫
d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k2)2
2(k + ℓ) · ℓ
(k + ℓ)2 ℓ2

. (B.4)

We perform the ℓ integral first after using the Feynman reparametrization:

I2 =

∫ 1

0
dx

∫
d2ωk

(2π)2ω

1

(k2)2

∫
d2ωℓ

(2π)2ω

2ℓ · (ℓ+ k)

[ℓ2 + 2xk · ℓ+ xk2]2

= − 1

8π

∫ 1

0
dx

√
x√

1 − x

∫
d2ωk

(2π)2ω

1

k3

= −1

8

1

4π2

1

ǫ
, (B.5)

– 25 –



J
H
E
P
1
0
(
2
0
0
8
)
0
5
3

where for the second equality, we have used the integral,
∫

d2ωℓ

(2π)2ω

ℓmℓn
[ℓ2 + 2xℓ · k + k2]2

=
1

(4π)3/2

[
x2kmknΓ(1/2)

[x(1 − x)k2]1/2
+
gmn

2

Γ(−1/2)

[x(1 − x)k2]−1/2

]

∫
d2ωℓ

(2π)2ω

ℓm
[ℓ2 + 2xℓ · k + k2]2

= − 1

(4π)3/2

xkmΓ(1/2)

[x(1 − x)k2]1/2
. (B.6)

If one exchanges the order of integrations, there may appear an infrared singularity.

However by introducing infrared regulator mass m, one may get the same result in the

limit ω → 3/2 and m→ 0.

In the gauge boson exchange diagram, the following integral appears:

• I3 =

∫
d2ωk

(2π)2ω

∫
d2ωℓ

(2π)2ω

1

(k+ℓ)2
1

(k2)2
1

(ℓ2)2
[(k · ℓ)2 − k2ℓ2] ≡ I3,A − I3,B

We evaluated them as follows:

I3,A =

∫
d2ωk

(2π)2ω

kmkn

(k2)2

∫ 1

0
dx

Γ(3)

Γ(2)

∫
d2ωℓ

(2π)2ω

(1 − x)ℓmℓn
[ℓ2 + 2xℓ · k + k2]3

=

∫
d2ωk

(2π)2ω

kmkn

(k2)2

∫ 1

0
dx(1−x) 1

(4π)3/2

[
x2kmkn

Γ(3/2)

[x(1−x)k2]3/2
+
gmn

2

Γ(1/2)

[x(1−x)k2]1/2

]

=
1

16

1

4π2

1

ǫ
.

I3,B =

∫
d2ω

(2π)2ω

1

k2

∫ 1

0
dx

∫
d2ωℓ

(2π)2ω

1

[ℓ2 + 2xℓ · k + xk2]2

=
Γ(1/2)

(4π)3/2Γ(2)

∫ 1

0
dx

1

x(1 − x)

∫
d2ωk

(2π)2ω

1

(k2)3/2

=
1

8

1

4π2

1

ǫ
(B.7)

Hence,

I3 =

(
1

16
− 1

8

)
1

4π2

1

ǫ
= − 1

16

1

4π2

1

ǫ
. (B.8)

B.2 Contribution from sextet scalar potential

The Lagrangian contains sextet scalar interaction −Vscalar. Three of the scalar fields couple

to O and the rest three to O†. With U(N) and U(N) index loops, combinatorial factors

are given by

−3 ·N2
[
2I

⊗3 − 4P13 ⊗ I2 − K12 ⊗ I3 − I ⊗ K23 ⊗ I2 + 2K13 ⊗ K12 + 2K12 ⊗ K13

]
(B.9)

There are three scalar propagators and one interaction vertex, contributing factors

1

3κ2
(i)3 [i ] ·N2 =

4π2

3
λ2 (B.10)

The remaining 2-loop integral is given by I1. Summing over all contributions, the scalar

sextet interaction gives rise to 2-loop dilatation operator

HB =
λ2

2

2L∑

ℓ=1

[
I − 2Pℓ,ℓ+2 − Kℓ,ℓ+1 + Pℓ,ℓ+2Kℓ,ℓ+1 + Kℓ,ℓ+1Pℓ,ℓ+1

]
(B.11)
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B.3 Contribution from two-site interactions

In this appendix we shall present the full detailed computation of the two site interactions.

First let us compute the Yukawa two-site interactions. The nonvanishing Yukawa

interaction leads to only a K-type interaction. The relevant Feynman diagram is depicted

in figure 2b.

With two Yukawa interaction components and one U(N) and one U(N) color traces,

combinatorial factors are gathered as

1

2!
· 2 ·N2 = N2. (B.12)

There are four propagators and two vertices. This yields numerical factors

(−i)2(i)2[i ]2
(
±2i

κ

)2

· (−)FD (B.13)

where the subscript ( )FD signifies the Fermi-Dirac statistics minus sign. The loop integral

is given by

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(−(k)2)2
tr

(
ℓ/

ℓ2
k/+ ℓ/

(k + ℓ)2

)
(B.14)

where the i2 factor comes from the analytic continuation of the integration measure.

After taking the gamma matrix trace trγmγn = 2gmn, this integral equals to −I2
in (B.5).

Hence putting everything together, one has

λ2 (−1)

2ǫ
K (B.15)

for the Yukawa two-site interactions. The contribution to the operator renormalization is

negative of this: Therefore, the Yukawa contribution is

HF = λ2
2L∑

ℓ=1

Kℓ,ℓ+1 (B.16)

We now evaluate the gauge two-site interactions.

The gauge boson interactions contribute both K and I type diagrams to the dilatation

operator. Let us begin with K type contribution. The relevant diagram is in figure 2c. It

has combinatorial factors

1

2!
· 2 ·N2 = N2. (B.17)

There are three boson propagators, two gauge propagators and one seagull interaction

vertex. So, numerical factors are given by

(−i)3 · [−i ]3 · (±1)2
(

1

κ

)2

= −4π2

k2
(B.18)
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where the last factor accounts for the (±) relative sign of U(N) and U(N) Chern-Simons

term. It is important to note that the gauge field propagator in momentum space has no

i =
√
−1. The loop integral reads

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k+ℓ)2
1

(k2)2
1

(ℓ2)2
(ǫmnp(k+2ℓ)nkp)gmq(ǫqrs(k+2ℓ)r(−k)s) (B.19)

where again the i2 factor comes from the Euclidean rotation. Using the identity

gmqǫmnpǫqrs = −(gnrgps − gnsgpr), we find that the integral is the same as 4I3.

Hence putting everything together, one has

−λ
2

2

(−1)

2ǫ
K (B.20)

for the gauge two site K contributions and, for the operator renormalization,

−λ
2

2

1

2ǫ
K . (B.21)

There are also contributions to I from t-channel exchange of diamagnetic gauge boson

interaction. The corresponding Feynman diagram is depicted in Fig 2a. There are two

scalar propagators, two gauge boson propagators and two diamagnetic vertices. Note

again, for Chern-Simons theory, gauge boson propagator has no i in momentum space. So,

the combinatorial factor is

1

2!
2 · (−i)2 · [i ]2 ·N2 ·

(
1

κ

)2

= (4π2)λ2. (B.22)

The loop integral reads

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k2)2
ǫmna(k + ℓ)a

(k + ℓ)2
ǫmn

bℓb
ℓ2

(B.23)

Using the identity ǫmnaǫmn
b = −2gab, we find that this integral is the same as −I2. There

are identical contributions from each letter (with alternating U(N) and U(N) gauge boson

exchanges), we find the contribution as

−λ
2

4

(−1)

2ǫ
I . (B.24)

The corresponding operator renormalozation contribution is

−λ
2

4

1

2ǫ
I . (B.25)

Hence there are two gauge two-site contributions. Using 1/(2ǫ) = ln Λ, the gauge

two-site contributions to the anomalous dimension are summarized as

Hgauge =

2L∑

ℓ=1

[
−1

4
I − 1

2
Kℓ,ℓ+1

]
λ2 . (B.26)
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B.4 Contributions of wave function renormalization

The first one involves diamagnetic gauge interactions. The relevant Feynman diagrams are

in figure 3. As scalar fields are bi-fundamentals, there are processes involving U(N) gauge

boson pair, U(N) gauge boson pair, and one U(N) gauge boson and one U(N) gauge boson

pair, which are respectively corresponding to figure 3a, figure 3b and figure 3c. Taking

account of opposite relative sign between gauge boson propagators for U(N) and U(N) and

of different combinatorial weight of diamagnetic coupling terms, the numerical factor reads

1

2!
2·(−i)·[i ]2 ·[(−)2 ·(+)2+(+)2 ·(−)2+(+)(−)·(−2)2]N2

(
1

κ

)2

=−2i(4π2)λ2 (B.27)

Denote momentum of the external scalar field as pm. Then, loop integral reads

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k + ℓ+ p)2
ǫmnaka

k2

ǫmn
bℓb
ℓ2

. (B.28)

For the evaluation of this integral, let us introduce

IG(p) =

∫
d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k + ℓ+ p)2
2k · ℓ
k2 ℓ2

= 2

∫
d2ωℓ

(2π)2ω

1

ℓ2

∫ 1

0
dx

∫
d2ωk

(2π)2ω

k · ℓ
[(k + x(ℓ+ p))2 + x(1 − x)(ℓ+ p)2]2

= − 1

4π

∫ 1

0
dx

√
x

1 − x

∫
d2ωℓ

(2π)2ω

ℓ · (ℓ+ p)√
(ℓ+ p)2

. (B.29)

The x-integral is finite and equals to π/2. The remaining ℓ-integral can be performed

by applying Feynman’s parametrization. In dimensional regularization, we have

−1

8

Γ(3/2)

Γ(1/2)

∫ 1

0
dy

1√
y

∫
d2ωℓ

(2π)2ω

ℓ · p
[ℓ2 + 2xℓ · p+ xp2]3/2

= − 1

16

∫ 1

0

dy√
y

[
− Γ(ǫ)

(4π)ωΓ(3/2)

yp2

(y(1 − y)p2)ǫ

]
(B.30)

Taking ǫ = 3/2 − ω → 0, this integral equals to

IG =
1

24

1

4π2

1

ǫ
. (B.31)

Putting together, we thus find that these diagrams contribute to the wave function renor-

malization as

− 1

12
λ2 1

ǫ
(ip2) (B.32)

Consider next two diagrams involving four paramagnetic couplings. Planar diagrams

involve two vertices from U(N) and two from U(N), as shown in figure 4. Taking care of

opposite relative sign of gauge boson propagators between U(N) and U(N) and that there

are three internal scalar propagators, we have combinatorial factors

1

(2!)2
22 · (+)(−) · (−i)3[i ]2

(
1

κ

)2

N2(2) = −2i(4π2)λ2. (B.33)
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where we put an additional factor two because there are two such diagrams. With external

momentum pm, the loop integral read

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

ǫmnq(ℓ+2p)m(p+2k+2ℓ)nℓqǫ
abc(2ℓ+k+2p)a(k+2p)bkc

(k + ℓ+ p)2(ℓ+ p)2(k + p)2k2ℓ2
. (B.34)

This integral can be integrated without further assumption but we note that the numerator

of the integrand is already quadratic in pm. Using the isotropy of the system, we replace

papb → p2

3
gab (B.35)

and then set p to zero in the remaining integral. One may show that the results from the

both methods agree precisely with each other.

Thus the integral becomes

−16

3
p2 I3 =

p2

12π2

1

ǫ
. (B.36)

Putting all the factor together, one has

−2

3
λ2 1

ǫ
(ip2) (B.37)

There are two diagrams involving Chern-Simons cubic coupling. The contributions of

U(N) and U(N) are added up with an equal weight. The Feynman diagrams are in figure 5.

The relevant combinatorics is

3! · 3
3!

(−i)2[i ]4N2

(
(±)κi

3

)(
(±1)

κ

)3

(2) = −2i(4π2)λ2 (B.38)

where the last factor two takes care of the U(N) contribution. The loop integral becomes

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

ǫmqnǫmar(2p+k)
akrǫnbs(2p−ℓ+k)b(−k−ℓ)sǫqct(2p−ℓ)bℓt

(p− ℓ)2(k + ℓ)2(k + p)2k2ℓ2
. (B.39)

Using the rule of

papb →
δab

3
p2 ,

the integral becomes

i2
8p2

3

∫
d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

−k2ℓ2 + (k · ℓ)2
(k + ℓ)2(k2)2(ℓ2)2

. (B.40)

Using I3, one finds

p2

6

1

4π2

1

ǫ
. (B.41)

Therefore, the whole contribution combining the combinatorics becomes

−1

3
λ2 1

ǫ
ip2 . (B.42)
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There are also diagrams involving paramagnetic and diamagnetic couplings. Their net

combinatorial factor is nonzero, but the loop integral vanishes identically.

Let us now turn to the Yukawa contributions. First consider the Feynman diagrams

in figure 6a and figure 6b. Within the planar diagram, both fermion can be joined either

U(N) side (figure 6a) and U(N) side (figure 6b). The joining using the first two terms has

a factor 4 from the SU(4) index contraction. Then the cross terms between the first two

and the second two terms in total have a factor −4. Hence one can check that this cross

contributions cancel precisely the those from the first two.

By combining the second two of the Yukawa potential, for the U(N) and U(N) side,

we have combinational factors

1

2!
2 · (−i · i2)[i ]2 ·

(
2i

κ

)2

N2(−)FD × 8 = −32i(4π2)λ2. (B.43)

where the extra factor eight comes from one contraction of SU(4) index and the doubling

by U(N) and U(N).

Then the remaining integral has the expression,

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(p + k − ℓ)2
tr ℓ/ k/

k2 ℓ2
(B.44)

which is same as IG. Therefore the whole contribution is

−4

3
λ2 1

ǫ
(ip2) . (B.45)

For the wave function renormalization, the third two of Yukawa potential also con-

tribute. The diagram is in figure 6c. It has combinatoric factors,

(2!)2 · (−i) · (i)2[i ]2 ·
(
i

κ

)(−i
κ

)
N2(−)FD × (−6) = −24i(4π2)λ2 , (B.46)

where (2!)2 is the usual symmetry factor of the Feynman diagram. The last factor (−6)

comes from the following SU(4) index contraction

ǫIABCǫ
JCBA = −6 δJ

I (B.47)

where I is for the incoming and the J for the outgoing scalar SU(4) indices.

Then the remaining integral takes precisely the same from:

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(p + k − ℓ)2
tr ℓ/ k/

k2 ℓ2
(B.48)

which is again the same as IG. Therefore the whole contribution is

−λ2 1

ǫ
(ip2) . (B.49)

Finally, there are the vacuum polarization contributions of the gauge loop. The relevant

diagrans are depicted in figure 7.
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As we shall explain in the following appendix, the self energy correction for both A

and A gauge fields is given by

iΠab(k) = 8i

[
kakb − gabk

2

16k

]
, (B.50)

where the factor eight comes from the four complex scalars and fermions with an equal

weight.

For the relevant diagram of figure 7, the combinatorics factor reads

2!

2!
· (−i)[i ]2 ·

(
1

κ

)2

N2 × (2) = 2i(4π2)λ2 , (B.51)

where the last factor two comes from the doubling by replacing A gauge by the A gauge

field. The remaining Feynman integrals takes the from,

i

∫
d2ωk

(2π)2ω

ǫamn(2p + k)m(−k)nǫbij(k + 2p)ikj iΠab(k)

(k + p)2(k2)2
,

= 2

∫
d2ωk

(2π)2ω

k2p2 − (k · p)2
(k + p)2 k3

(B.52)

where we have a single i produced by the Euclidean rotation.

By the dimensional regularization, this leads to

p2 1

3π2

1

ǫ
. (B.53)

Hence the total contribution reads

8

3
λ2 1

ǫ
(ip2) . (B.54)

All the remaining diagrams, one may prove that their contribution is identically zero

after the dimensional regularization.

Finally we add up all the above contributions to the wave function renormalization

and find that

−3

4
λ2 1

ǫ
(−)(−ip2) . (B.55)

Since the counter term is a negative of this, the two-loop scalar wave function renor-

malization becomes

Zs = 1 − 3

4
λ2 1

ǫ
= 1 − 3

4
λ2(2 ln Λ) . (B.56)

In order to get the operator renormalization factor, one has to take Z
1

2
s out for each site,

which corresponds to adding −1
2 of (B.56) to the interaction part of renormalization. The

final contribution to the anomalous dimension is

HZ = λ2
2L∑

ℓ=1

[(
1

12
+

2

3
+

1

3

)
+

(
4

3
+ 1

)
− 8

3

]
I = λ2

2L∑

ℓ=1

3

4
I . (B.57)
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For the gauge two-loop contributions 1/12, 2/3, 1/3 including the gauge self-energy

correction contribution 8/3, the two-loop Feynman diagram computation is carried out in

ref. [57] for the U(1) case. One can check the precise agreement after taking care of the

planarity factor and the number of matter degrees. Furthermore, ref. [58] deals with the

two-loop Yukawa contribution to the scalar wave function renormalization for again U(1).

This result is again matching with ours if one takes care of the planarity and the number

of fermions.

B.5 One loop self energy correction to the gauge field

The self-energy correction enters in the same form for the U(N) and the U(N) gauge fields.

Therefore we focus on the correction to A gauge field only. At the one-loop level, the

boson, the fermion, the gauge and the ghost loops may in general contribute to the gauge

self-energy correction. In this appendix, we identify these self-energy contributions.

We begin with the scalar loop contribution. It is the sub-diagram of figure 7a. The

momentum k plays the role of the external momentum. The self energy contribution reads

iΠs
ab(k) = (i)2[i ]2(4)i

∫
d2ωℓ

(2π)2ω

(2ℓ+ k)a(2ℓ+ k)b
(k + ℓ)2 ℓ2

, (B.58)

where the extra factor 4 comes from the fact that 4 complex scalars are coupled to the

gauge field. Using the dimensional regularization, one obtains

iΠs
ab(k) = (4)i

[
kakb − gabk

2

16k

]
. (B.59)

Similarly, for the fermion loop, the self-energy contribution becomes

iΠf
ab(k) = (i)2[i ]2(4)(−)FD i

∫
d2ωℓ

(2π)2ω

Tr γa (ℓ/+ k/ ) γb ℓ/

(k + ℓ)2 ℓ2
, (B.60)

where again the extra factor four comes from the fact that there are 4 complex fundamental

fermions. Using the γ matrix identity and the dimensional regularization, the contribution

becomes

iΠf
ab(k) = (4)i

[
kakb − gabk

2

16k

]
. (B.61)

Hence, each complex matter contributes by the same weight and sign.

One can continue the dimensions 2ω to four and obtain the vacuum polarization in

four-dimensional Yang-Mills theories. The integration leads to the logarithmic divergence

in this case contributing positively to the β-function of the Yang-Mills coupling. Again,

boson and fermion contributions add up.

For the gluon self-energy contribution, we have

iΠA
ab(k) = (3) · (3)[i2]

[
iκ

3

]2[1

κ

]2

(i)2[i ]2(4)i

∫
d2ωℓ

(2π)2ω

ǫmbnǫjaiǫimqǫnjr(ℓ+ k)qℓr

(k + ℓ)2 ℓ2
,

= i

∫
d2ωℓ

(2π)2ω

(ℓ+ k)aℓb + (ℓ+ k)bℓa
(k + ℓ)2 ℓ2

. (B.62)
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It becomes

iΠA
ab(k) = −i

[
kakb + gabk

2

32k

]
, (B.63)

which alone does not respect the gauge invariance. However, there exists also the ghost

loop contribution,

iΠgh
ab (k) = (i)2[i ]2(−)i

∫
d2ωℓ

(2π)2ω

(ℓ+ k)aℓb + (ℓ+ k)bℓa
(k + ℓ)2 ℓ2

, (B.64)

where we put the extra (−) sign due to the ghost statistics. Therefore, the ghost contri-

bution cancels out precisely the gauge loop contribution, reproducing the well-established

result [43].

Again, analytically continuing to four dimensions, the integral expression for the gauge

part changes while the ghost integral remains intact. With Yang-Mills couplings, both

contributions no longer cancel each other but contribute negatively to the β-function.

C. Wrapping interactions for the two-sites

As in figure 8, there are occuring three kinds of wrapping interactions. First is the gauge

interactions of two diamagnetic couplings in figure 8b. It is an I type interaction and

happens, not for each site, but just once.

The combinatorial factor is

1

2!
2 · (−i)2 · [2i ]2 · (+)(−) ·N2 ·

(
1

κ

)2

= −(4)4π2λ2. (C.1)

where (+)(-) accounts for the the relative U(N) and U(N) Chern-Simons term and the

factor two in the vertices takes care of the diamagnetic interaction.

The loop integral

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(k2)2
ǫmna(k + ℓ)a

(k + ℓ)2
ǫmn

bℓb
ℓ2

(C.2)

is the same as (B.23). So, the loop integral is evaluated as

1

8

1

4π2

1

ǫ
. (C.3)

Putting things together, we find the whole contribution as

λ2 (−1)

2ǫ
I . (C.4)

The corresponding operator renormalization contribution is

λ2 1

2ǫ
I . (C.5)

The second is for the K type gauge wrapping, whose Feynman diagram is depicted in

figure 8c. It is doubling of the K-type interaction discussed for the general two-site gauge
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interactions. This doubling occurs due to the fact that, on the cylinder, one may have

two different topology of the diagrams. Namely the diamagnetic interaction of the same

gauge group may happen either one side or the other side, which is not possible for the

infinite chains. From the previous result, the corresponding extra operator renormalization

contribution is

−λ2 1

2ǫ
K , (C.6)

where we take into account of the fact that the doubling occurs both for the U(N) and

U(N).

There is an additional wrapping interaction coming from the third two terms in the

Yukawa potential. The Feynman diagram is in figure 8. In order to have proper contrac-

tions, one has to join operator site one (Y I1) to the site two (Y J2) whereas the operator

site two Y †
I2

to Y †
J1

. The corresponding ǫ tensors in the Yukawa interaction produce

ǫI1AJ2B ǫ
I2BJ1A = 2(I − K) . (C.7)

The combinatorial factors are gathered as

2!

2!
· 2 · 2(−i)2(i)2[i ]2 ·N2 ·

(
i

κ

)(−i
κ

)
· (−)FD = 4(4π2) · λ2 . (C.8)

The loop integral is given by

i2
∫

d2ωk

(2π)2ω

d2ωℓ

(2π)2ω

1

(−(k)2)2
tr

(
ℓ/

ℓ2
k/+ ℓ/

(k + ℓ)2

)
, (C.9)

which is the same as (B.14). By the loop integration, one gets

1

8

1

4π2

1

ǫ
. (C.10)

Hence putting everything together, one has

2λ2 (−1)

2ǫ
(K − I) (C.11)

for the Yukawa wrapping interactions. Therefore, the Yukawa contribution to the operator

renormalization is

2λ2 1

2ǫ
(K − I) . (C.12)

Adding up the gauge and Yukawa contributions, the wrapping interaction contribution

to the two-site Hamiltonian is

Hwrap = I − K + 2(K − I) = −I + K . (C.13)
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